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LETTER TO THE EDITOR

Excitonic–biexcitonic polaritons—new quasiparticles in
semiconductors

Z G Koinov†
Department of Physics, Higher Institute for Transport Engineering, 1574 Sofia, Bulgaria

Received 12 March 1996, in final form 8 May 1996

Abstract. The existence of new quasiparticles in semiconductors, formed by the coupling of
photons with excitons and biexcitons, is theoretically predicted. This elementary excitation
(excitonic–biexcitonic polaritons) manifests itself as a common pole of photon, and two- and
four-particle electron–hole Green functions. The dependence of the dielectric function on the
existence of biexcitons is discussed in the case ofZ12 exciton resonance of CuBr.

The last two decades of semiconductor research have been characterized by a large number
of studies, which have considered the problem of light propagation in crystals as polaritons
propagating through the crystals. From the theoretical point of view the polariton modes
are formed by the interaction of light with the polarization in crystals. The polarization
can be caused by atomic displacements or it can be of electronic origin. In the first case
the light and the lattice vibrational modes are coupled into a set of normal modes. These
new modes are called phonon polaritons. In what follows we will consider the ions to
be fixed at their equilibrium positions, i.e. we assume that the polarization is caused by
the collective electronic excitations. In an ideal crystallized semiconductor, excitons and
biexcitons are the lowest energetically electronic excitations. In what follows we will show
that in the system under consideration the light, excitons and biexcitons are coupled into a
set of normal modes. We call these new modes excitonic–biexcitonic polaritons.

Turning our attention to the theoretical description of biexcitons we find that two
basic approaches have been proposed. According to the first one, which is called a
phenomenological approach, the excitons are boson excitations and the biexcitons are
considered as compound particles formed by the coupling of two excitons due to the exciton–
exciton attractive potential (Ivanovet al 1991, Keldysh 1992, Ivanov and Haug 1993, 1995a,
b). But, if only the attractive potential between the boson particles (excitons) is taken into
account, the system of Bose particles is unstable against spontaneous contraction. In order
to avoid this difficulty one has to introduce two equivalent types of exciton with the same
parameters, both with total spin zero. The only distinction is that the excitons of the different
types attract each other whereas excitons of the same type have a repulsive interaction. The
main problem with the phenomenological approach arises due to the fact that excitons and
biexcitons are not truly independent boson particles. In the second approach the explicit
introduction of boson creation and annihilation operators for the exciton states is avoided.
The second method, which is a completely microscopic treatment, is based on the assumption
that the biexcitons are four-particle (two electrons and two holes) bound states (Combescot
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and Combescot 1989, Ivanovet al 1991). The main problem with this approach is that
the equations for the corresponding many-particle Green functions are too complicated, but
the method is very suitable for accounting for the changes of the biexciton properties and
parameters due to the Coulomb interactions.

In this letter we formulate a microscopic Green function method for describing the
elementary excitation spectra in a system of interacting photons and electrons taking into
account not only the two-particle electron–hole bound states, but also the four-particle (two
electrons and two holes) bound states as well. The method is based on the field-theoretical
technique which naturally leads to the Legendre transforms of the generating functional.
Using the functional technique combined with the method of Legendre transforms we derive
a set of nine independent exact equations for the photon, two- and four-particle electron–
hole Green functions. Knowledge of the solutions of the above equations provides the
excitation energies of the quasiparticles. In this letter we report two main results.

(i) In the system of interacting electrons and photons, there exist well-defined composite
quasiparticles (excitonic–biexcitonic polaritons) formed by the coupling of photons, excitons
and biexcitons. The excitonic–biexcitonic polaritons are manifested as common poles of the
Fourier transforms for the photon, and two- and four-particle electron–hole Green functions.
Although this result is to be expected for general reasons, it has not been derived in previous
papers. A similar problem has been analysed recently by Ivanov and Haug (1993, 1995a,
b). In these studies the authors proposed the so-called ‘bipolariton concept’ which treats the
excitonic molecule as two polaritons quasi-bound through the Coulomb interaction, rather
than the two-exciton complex. The starting Hamiltonian for this model has the form

H = H
(0)
pt + H(0)

exc + Hexc−pt + Hexc−exc

whereH
(0)
pt and H(0)

exc are the Hamiltonians for the system of non-interacting photons and
excitons. They can be expressed in terms of Bose creation and annihilation operators for
the photon and exciton states. The coupling of the photons and excitons into excitonic
polaritons is due to the exciton–photon interactionHexc−pt . The coupling of two excitons
of the polariton waves into bipolaritons is due to the last term in the above equation.

The bipolariton concept contradicts our result that the new quasiparticles (excitonic–
biexcitonic polaritons) exist in the system of interacting photons and electrons. In order
to clarify how our result is connected with the bipolariton model the following critical
remarks should be made. The bipolariton model describes the non-linear propagation of
the polariton waves. In the case where the non-linearities can be neglected there exist two
polariton branches, which are the roots of the equationω2ε(Q, ω) = c2Q2, whereε is the
dielectric function. If one takes into account the exciton–exciton interaction, then not only
are the bipolaritons formed, but also the existence of the bipolaritons modifies the dielectric
function. In the studies mentioned above the bipolaritons do not modify the excitonic–
polariton dispersion. For this reason the photon and exciton Green functions have common
poles (upper and lower polariton branches), while the poles of the two-exciton (bipolariton)
Green function depend on the bipolariton binding energy. The authors stated that the Bethe–
Salpeter equation for the bipolariton Green function can be derived from the Heisenberg
equations for the photon, exciton and biexciton creation and annihilation operators, when the
non-linear term in the corresponding Heisenberg equation (the third term in the right-hand
side of equation (34) in a paper by Ivanov and Haug 1993) is neglected. But, this term
is responsible for the exciton–exciton interaction and the non-linear polariton absorption is
governed by the neglected term. If the authors neglected the exciton–exciton interaction
simply in order to obtain explicit results, then one may well ask whether this neglected



Letter to the Editor L393

term does not change the form of the Bethe–Salpeter kernel and, therefore, the numerically
calculated bipolariton binding energy.

(ii) The second result concerns the fact that the formation of biexcitons may modify the
dielectric function and, therefore, the excitonic–polariton dispersion. In order to obtain a
simple understanding of this problem we consider the eightfold-degenerate exciton ground
state for theZ12 series of CuBr. In this case the exciton states are formed by06 conduction
and 08 valence band. The splitting of the exciton ground state is caused by the Elliott
exchange interaction and yields the exciton states03⊕04 and05. The05 exciton dispersion

E05(Q) = E05 + h̄2Q2/2Mexc

whereE05 = E03⊕04 + 1E; 1E is the splitting caused by the Elliott exchange interaction.
The dielectric functionε(Q, ω) can be expressed in the following form:

ε(Q, ω) = 1 − 4πh̄c2

ω2
5(L)(Q, ω)

where5(L) is the proper self-energy part of the long-wavelength photons, and it can be
calculated by means of the corresponding Green functionKE

M . In diagrammatic language
KE

M can be obtained by subtracting from the two-particle Green function any diagrams that
may be separated into two parts by cutting only a long-wavelength photon line. In the case
where the existence of the biexciton states can be neglected,KE

M assumes the form of the
two-particle Green function for ‘mechanical’ excitons when the Elliott exchange interaction
is included, and the dielectric function takes the following form:

ε(Q, ω) = εb

(
1 + 1LT

E05(Q) − h̄ω
+ 1LT

E05(Q) + h̄ω

)
where 1LT is the longitudinal–transverse splitting andεb is the ‘background’ dielectric
constant. The exciton resonance at the pointQ = 0 can be observed for the energy of
exciting photons ¯hω05 = E03⊕04 + 1E . Our calculations predict that the existence of
biexcitons modifies the dielectric function, and the optical absorption of the photons of
energyh̄ωpt = E03⊕04 + 1E − 1biexc can be observed. The energy shift1biexc at the point
Q = 0 can be calculated by means of the corresponding exciton–biexciton matrix element.
Later, we will see that the order of magnitude of1biexc can be obtained from two-photon
absorption measurements. It is worth noting that according to the bipolariton model this
effect cannot be observed.

We now discuss the model and the method. The system under consideration consists of
a radiation field, described by the actionS

(ω)

0 and a material system. In this letter we will
consider the ions fixed at their equilibrium positions. In this approximation the material
system is the semiconductor, which can be described by the action for non-interacting
electrons in a periodical lattice potentialS

(e)

0 . The radiation and the matter interact via an
electron–photon interaction, described by the actionS(e−ω). In terms of the field theory we
deal with a boson (photon) fieldAα(z) interacting with a fermion field9̄(y) (or 9(x))
at finite temperatures. Herez = ρ, v, y = r, σ, u and x = r′, σ ′, u′ are composite
variables, wherer, r′, ρ are radius vectors andσ, σ ′ are spin indices. According to the
finite-temperature field theory, invented by Matsubara (1955), the variablesu, u′, v range
from 0 to h̄β = h̄(kBT )−1, whereT is the temperature,kB being the Boltzmann constant.

In the crystal optics approximation the action of the system has the following form
(Koinov and Glinskii 1988):

S1 = S
(e)

0 + S
(ω)

0 + S(e−ω) + S(e−e) (1)
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where

S
(e)

0 = 9̄(y)G(0) −1(y, x)9(x) (2a)

S
(ω)

0 = 1

2
Aα(z)D

(0) −1
αβ (z, z′)Aβ(z′) (2b)

S(e−ω) = 9̄(y)0(0)
α (y, x|z)9(x)Aα(z) (2c)

S(e−e) = −1

2
9̄(y)9(x)0̃(0)

α (y, x|z)D̃(0)
αβ (z, z′)0̃(0)

β (y ′, x ′|z′)9̄(y ′)9(x ′). (2d)

Here and throughout we use the summation–integration convention that repeated variables
are summed or integrated over. The actionS(e−e)describes the short-range part of the
electron–electron interaction.G(0) −1(y, x) is the inverse one-particle Green function for
the system of non-interacting electrons in a periodical lattice potential.D

(0) −1
αβ (z, z′) is the

inverse free-photon propagator (in a gauge where the scalar potential is equal to zero).0(0)
α

is the ‘bare’ electron–photon vertex.
All Matsubara Green functions can be obtained by functional differentiation from the

generating functional for the connected Green functionsZ[J, M, N ] which is defined as
follows:

Z[J, M, N ] = ln W [J, M, N ] (3a)

whereJ is the source of the photon field;M andN are the two- and four-particle electron–
hole sources, and

W [J, M, N ] =
∫

Dµ(9̄, 9, A) exp{S + Jα(z)Aα(z) − 9̄(y)M(y, x)9(x)

+ 9̄(y)9̄(y ′)N(y, y ′; x, x ′)9(x)9(x ′)}. (3b)

In the last equation the measure Dµ is given by Dµ = constant× d9̄ d9 dA, where
the normalization constant is chosen in such a manner that

∫
Dµ exp(S) = 1. The

sourceN(y, y ′; x, x ′) is antisymmetric over the argumentsy, y ′ andx, x ′: N(y, y ′; x, x ′) =
−N(y ′, y; x, x ′) = −N(y, y ′; x ′, x).

The photon Green function and one-particle electron Green function can be defined as
follows:

Dαβ(z, z′) = −〈T̂ν{Aα(z)Aβ(z′)}〉 = − δ2Z

δJα(z) δJβ(z′)
(4a)

G(x, y) = −〈T̂u{9(x)9̄(y ′)}〉 = − δZ

δM(y, x)
. (4b)

Here all functional derivatives over the fermion fields and over the sources of the
fermion type are left-handed ones, and after the functional differentiation one should set
J = M = N = 0. In a similar way we introduce the two- and four-particle electron–hole
Green functions:

K

(
x y ′

y x ′

)
= −〈T̂u{9̄(y)9(x)9̄(y ′)9(x ′)}〉 = − δ2Z

δM(y, x) δM(y ′, x ′)
(4c)

R

(
x21 y43

y21 x43

)
= − δ2Z

δN(y12; x12) δN(y34; x34)

= − 〈T̂u{9̄(y3)9̄(y4)9(x3)9(x4)9̄(y1)9̄(y2)9(x1)9(x2)}〉 (4d)

where T̂ is a u (or u′, v) ordering operator,y12 = {y1, y2}, x12 = {x1, x2} are composite
variables and the brackets〈O〉 on an operatorO mean that the thermodynamic average is
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taken. The other two functional derivatives ofZ with respect to the sources are

Rα(z) = − δZ

δJα(z)
1(x21; y21) = − δZ

δN(y12; x12)
(4e)

The basic idea in our method is to use the second Legendre transform in order to derive
a set of exact equations for the Green functions and vertex functions.

It is convenient to treat equations(4b) and (4e) as definitions for functionals
R[J, M, N ], G[J, M, N ] and 1[J, M, N ]. If those functionals are invertible with inverses
J [R, G, 1], M[R, G, 1] and N [R, G, 1], then we define the second Legendre transforms
by

V [R, G, 1] = Z[R, G, 1] − Jα(z)
δZ

δJα(z)
− M(y, x)

δZ

δM(y, x)

− N(y12; x12)
δZ

δN(y12; x12)
. (5)

Furthermore, we based our treatment on the set of nine independent exact equations for
corresponding vertex and Green functions. By using an important property of the second
Legendre transform—its orthogonality—one can derive the following set of equations:

δ2Z

δAi(x) δAj (x ′)
δ2V

δBj (x ′) δBk(x ′′)
= −δikδ(x − x ′′). (6)

Here A1(x) = Jα(z), A2(x) = M(y, x), A3(x) = N(y12; x12) are the sources of the
corresponding fields andB1(x) = Rα(z), B2(x) = G(x, y), B3(x) = 1(x21; y21) are the
corresponding dual quantities. Thus takingi = 1, 2, 3 andk = 1, 2, 3 we obtain a set of nine
independent exact equations. Those equations allow us to formulate a microscopic theory of
the propagation of a long-wavelength electromagnetic field through the crystal. Equations
(6) allow us to obtain the following relationships between the three Green functionsDαβ, K

andR. The first one is a relationship between the photon propagator and two-particle Green
function:

Dαβ(z, z′) = D
(0)
αβ (z, z′) + D(0)

αγ (z, z′′)0(0)
γ (y, x|z′′)K

(
x y ′

y x ′

)
0

(0)
δ (y ′, x ′|z′′′)D(0)

δβ (z′′′, z′).

(7a)

One can also obtain from equations (6) the relationship between two- and four-particle
Green functions in the form

R

(
x21 y43

y21 x43

)
= R0

(
x21 y43

y21 x43

)
+ R0

(
x21 y65

y21 x65

)
δ2V

δ1(x65; y65) δG(x, y)

× K

(
x y ′

y x ′

)
δ2V

δG(x ′, y ′) δ1(x87; y87)
R0

(
x87 y43

y87 x43

)
(7b)

where R0 is the four-particle electron–hole Green function when the polariton effects
are neglected. The main result which follows from equations (7) is that in the system
of interacting electrons and photons, there exist well-defined composite quasiparticles
(excitonic–biexcitonic polaritons), which manifest themselves as common poles of the
Fourier transforms of the three Green functionsDαβ, K andR (Gell-Mann and Low 1951).
Thus, any elementary excitation of wave vectorQ and energy ¯hων(Q) of the system under
consideration manifests itself as a pole near the real axis in the frequency plane of the
function

K

(
r1σ1 r3σ3

r2σ2 r4σ4

∣∣∣∣u2 − u1; u4 − u3; z

)
.
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The last one is obtained from the Fourier transform of the two-particle Green function

K

(
r1σ1 r3σ3

r2σ2 r4σ4

∣∣∣∣u2 − u1; u4 − u3; 1

2
(u2 + u1 − u3 − u4)

)
by the analytic continuation of the set of points iωp = i(2π/h̄β)p; p = 0, ±1, ±2, . . .,
along the imaginary axis into the appropriate half of thez-plane. Similarly, one can define
the analytic continuation of the photon and four-particle Green functions. If we restrict the
range of frequenciesω to the neighbourhood of positionων(Q), we may write

K

(
r1σ1 r3σ3

r2σ2 r4σ4

∣∣∣∣u2 − u1; u4 − u3; ω

)
≈ 8νQ(r2σ2; r1σ1; u21)8

νQ∗
(r4σ4; r3σ3; u43)

ω − ων(Q) + i0+ (8a)

Dαβ(Q, ω) ≈ AνQ(Q)AνQ∗
(Q)

ω − ων(Q) + i0+ (8b)

Rc

(
(r, σ )21 (r, σ )65

(r, σ )43 (r, σ )87

∣∣∣∣iωm1; iωm2; iωp1|iωm3; iωm4; iωp2|ω
)

≈ 9νQ((r, σ )43; (r, σ )21|iωm1; iωm2; iωp1)

× 9νQ∗
((r, σ )87; (r, σ )65|iωm3; iωm4; iωp2)

ω − ων(Q) + i0+ (8c)

where8νQ(r2σ2; r1σ1; u21), A
νQ(Q) and 9νQ((r, σ )43; (r, σ )21|iωm1; iωm2; iωp1) are the

electron–hole, photon and four-particle amplitudes, respectively. Since the excitonic–
biexcitonic polariton energy ¯hων(Q) is a pole of the photon Green function, it can be
obtained from the corresponding Dyson equation for the photon Green function. In this
way, one can obtain the Maxwell equations for the vector potentialAνQ

α in the form

[(ων/c)
2εαβ(Q, ων) − δαβQ2 + QαQβ ]AνQ

β (Q) = 0 (9a)

where the tensorεαβ(Q, ων) has been defined as follows:

εαβ(Q, ω) = δαβ − 4πh̄c2

ω2
5(L)

αβ
(Q, ω). (9b)

Here5
(L)
αβ (Q, ω) is the Fourier transform of the proper self-energy part of the long-wave-

length photons.5(L)
αβ can be calculated from the corresponding exciton Green function:

5
(L)
αβ (z, z′) = 0(0)

α (y, x|z) KE
M

(
x y ′

y x ′

)
0

(0)
β (y ′, x ′|z′). (9c)

KE−1
M

(
y x ′

x y ′

)
= K(0)−1

(
y x ′

x y ′

)
− δ6(y, x)

δG(y ′, x ′)
− 2

δ6(y, x)

δ1(x21; y2, y ′)
1(x21; y21)G

−1(y1, x
′)

− δ6(y, x)

δ1(x21; y21)
R0

(
x21 y43

y21 x43

)
δ6(y ′, x ′)

δ1(x43; y43)
. (9d)

Here, the electron mass operator6 is considered as a functional ofR, G and1 after going
over from the functionalZ to the second Legendre transform.

The energy shift1biexc is due to the last term in(9d). Unfortunately, equation(9d)

is so complicated that it is of almost no use in calculating the dielectric tensorεαβ . For
this reason, as a first approximation, we can treat the effects of the four-particle states by
using in the last term in equation(9d), the biexciton Green function, instead ofR0. The
simplest case in which the calculation can be done is the case of the exciton resonance
at the pointQ = 0 in CuBr. In CuBr the lowest poles of the exciton Green function
are the exciton states with symmetry03 ⊕ 04 ⊕ 05, but only excitons with05 symmetry
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are dipole active. Thus, the energy of exciting photons has to be equal to the lowest
dipole-active pole of the exciton Green function, i.e.Eexc

05
= Eexc

03⊕04
+ 1E where1E is

the splitting caused by the Elliott exchange interaction. The lowest poles of the biexciton
Green function in CuBr, i.e. the biexciton states at the pointQ = 0 have03 ⊕ 04 ⊕ 05

symmetry. According to our theory, the existence of biexcitons modifies the dielectric
function, and the optical absorption of the photons by excitation of exciton states at the
point Q = 0 is determined by the lowest dipole-active pole of the Green function(9d) with
05 symmetry, i.e. the photon energy has to be equal toEs(Q = 0) = E05. Since we are
looking for the lowest dipole-active state, instead of the sum over all exciton bands, we take
into account only the resonant term proportional to 1/(Eexc

05
− E05). Furthermore, we take

into account only the three lowest biexciton states with03 ⊕ 04 ⊕ 05 symmetry, assuming
that Ebiexc

01
− E05 ≈ Ebiexc

05
− E05 ≈ Ebiexc

03
− E05 ≈ E0. In this approximation the pole of

the Green function(9d) is given by

E05 = Eexc
05

− 1biexc 1biexc = 1

E0
(|A0105|2 + |A0505|2 + |A0305|2) (10a)

where the exciton–biexciton matrix element is defined as follows:

Amn = 〈9mQ=0
biexc |δ6/δ1| FnQ=0

exc 〉 (10b)

where F
nQ
vc (k) and 9

mQ
c,c′,v,v′(k, p, q) are the exciton and biexciton wave functions. The

matrix element(10b) describes a transition between an exciton and a biexciton state. It is
worth noting that since our theory takes into account the non-linear polariton absorption
in principle, the operatorδ6/δG should depend on the light intensity and on the exciton
population in principle. But, it has a very complicated form, so at the present time the
calculation of the exciton–biexciton matrix elements remains an open problem.

We now proceed to a comparison with the experiment. Due to the valence band
degeneracy, the biexciton ground state in CuBr is sixfold degenerate. For the centre-
of-mass momentum ¯hQ = 0 of biexcitons, the different types of two-particle interaction
(electron–electron, electron–hole and hole–hole) split the ground state according to the
relation (06 ⊗ 06)

− ⊗ (08 ⊗ 08)
− = 01 ⊕ 03 ⊕ 05. The biexciton binding energies

Eb
bi(0i) = 2E03⊕04 − Ebi(0i) for the different ground states are given by the relation

Eb
bi(0i) = E0

bi + 1E(0i), where1E(0i) are the energy shifts of the states with symmetry
0i due to the hole–hole interactions and have the following forms (Honerlageet al 1985):

1E(01) = −15

4
β1 + 18β2 + 9

4
β3 1E(03) = −3

4
β1

1E(05) = −3

4
β1 − 18β2 + 3

4
β3.

The energyE0
bi can be written in the following form:

E0
bi = 2E03⊕04 + 3

4
1E + 1

4
1LT − (Ed

bi + 3α1)

whereEd
bi + 3α1 is the contribution to the biexciton binding energy due to the diagonal

terms of the biexciton Hamiltonian. This part of the biexciton energy can be calculated
theoretically by using a biexciton wave function symmetric with respect to the exchange of
two identical particles and neglecting all exchange interactions. The parameters for theZ12

exciton resonance of CuBr and the parameters of the biexciton states are (Honerlageet al
1985) as follows:

E05 = 2.9644 eV Ebi(01) = 5.9059 eV
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E03⊕04 = 2.9627 eV Ebi(05) = 5.9103 eV

1LT = 0.0122 eV Ebi(03) = 5.9128 eV.

From the experimental results (Honerlageet al 1981, 1985) one can obtain that the
energyE0

bi is equal to 5.9158 eV. If we assume that1E = E05 − E03⊕04 = 0.0017 eV, we
calculate thatEd

bi +3α1 is equal to 0.0139 eV. But, according to the theoretical calculations
by Ekardt and Sheboul (1976), the energyEd

bi +3α1 is equal to 0.0265 eV. The discrepancy
between the energyEd

bi + 3α1 calculated theoretically by Ekardt and Sheboul and that
obtained by Honerlageet al (1981, 1985) can be explained by making the assumption that
the splitting due to the Elliott exchange interaction is not equal to 0.0017 eV, since the
existence of biexcitons modifies the dielectric function and the exciton resonance can be
observed for the energy of exciting photons ¯hωpt = 2.9644 eV= E03+04 +1E −1biexc. The
order of magnitude of the splitting due to the Elliott exchange interaction and energy shift
1biexc can be obtained by assuming thatE0

bi is equal to 5.9158 eV andEd
bi + 3α1 is equal

to 0.0265 eV. Then one can obtain for the splitting due to the Elliott exchange interaction
1E = 0.0165 eV and for the energy shift1biexc = 0.0148 eV. Although the calculations
by Ekardt and Sheboul should be corrected for the band-structure terms, screening effects,
polaron masses, etc, we will still have an important Elliott exchange interaction which is
then compensated by the energy shift1biexc.
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