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LETTER TO THE EDITOR

Excitonic—biexcitonic polaritons—new quasiparticles in
semiconductors

Z G Koinovf
Department of Physics, Higher Institute for Transport Engineering, 1574 Sofia, Bulgaria

Received 12 March 1996, in final form 8 May 1996

Abstract. The existence of new quasiparticles in semiconductors, formed by the coupling of
photons with excitons and biexcitons, is theoretically predicted. This elementary excitation
(excitonic—biexcitonic polaritons) manifests itself as a common pole of photon, and two- and
four-particle electron—hole Green functions. The dependence of the dielectric function on the
existence of biexcitons is discussed in the cas€fexciton resonance of CuBr.

The last two decades of semiconductor research have been characterized by a large number
of studies, which have considered the problem of light propagation in crystals as polaritons
propagating through the crystals. From the theoretical point of view the polariton modes
are formed by the interaction of light with the polarization in crystals. The polarization
can be caused by atomic displacements or it can be of electronic origin. In the first case
the light and the lattice vibrational modes are coupled into a set of normal modes. These
new modes are called phonon polaritons. In what follows we will consider the ions to
be fixed at their equilibrium positions, i.e. we assume that the polarization is caused by
the collective electronic excitations. In an ideal crystallized semiconductor, excitons and
biexcitons are the lowest energetically electronic excitations. In what follows we will show
that in the system under consideration the light, excitons and biexcitons are coupled into a
set of normal modes. We call these new modes excitonic—biexcitonic polaritons.

Turning our attention to the theoretical description of biexcitons we find that two
basic approaches have been proposed. According to the first one, which is called a
phenomenological approach, the excitons are boson excitations and the biexcitons are
considered as compound particles formed by the coupling of two excitons due to the exciton—
exciton attractive potential (lvanaat al 1991, Keldysh 1992, Ivanov and Haug 1993, 1995a,

b). But, if only the attractive potential between the boson particles (excitons) is taken into
account, the system of Bose particles is unstable against spontaneous contraction. In order
to avoid this difficulty one has to introduce two equivalent types of exciton with the same
parameters, both with total spin zero. The only distinction is that the excitons of the different
types attract each other whereas excitons of the same type have a repulsive interaction. The
main problem with the phenomenological approach arises due to the fact that excitons and
biexcitons are not truly independent boson particles. In the second approach the explicit
introduction of boson creation and annihilation operators for the exciton states is avoided.
The second method, which is a completely microscopic treatment, is based on the assumption
that the biexcitons are four-particle (two electrons and two holes) bound states (Combescot
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and Combescot 1989, Ivanat al 1991). The main problem with this approach is that
the equations for the corresponding many-particle Green functions are too complicated, but
the method is very suitable for accounting for the changes of the biexciton properties and
parameters due to the Coulomb interactions.

In this letter we formulate a microscopic Green function method for describing the
elementary excitation spectra in a system of interacting photons and electrons taking into
account not only the two-particle electron—hole bound states, but also the four-particle (two
electrons and two holes) bound states as well. The method is based on the field-theoretical
technique which naturally leads to the Legendre transforms of the generating functional.
Using the functional technique combined with the method of Legendre transforms we derive
a set of nine independent exact equations for the photon, two- and four-particle electron—
hole Green functions. Knowledge of the solutions of the above equations provides the
excitation energies of the quasiparticles. In this letter we report two main results.

(i) In the system of interacting electrons and photons, there exist well-defined composite
guasiparticles (excitonic—biexcitonic polaritons) formed by the coupling of photons, excitons
and biexcitons. The excitonic—biexcitonic polaritons are manifested as common poles of the
Fourier transforms for the photon, and two- and four-particle electron—hole Green functions.
Although this result is to be expected for general reasons, it has not been derived in previous
papers. A similar problem has been analysed recently by Ivanov and Haug (1993, 1995a,
b). In these studies the authors proposed the so-called ‘bipolariton concept’ which treats the
excitonic molecule as two polaritons quasi-bound through the Coulomb interaction, rather
than the two-exciton complex. The starting Hamiltonian for this model has the form

0
H= H/Et) + HE(SZ + Hexc—pt + Hexc—exc

where H,E?) and H© are the Hamiltonians for the system of non-interacting photons and
excitons. They can be expressed in terms of Bose creation and annihilation operators for
the photon and exciton states. The coupling of the photons and excitons into excitonic
polaritons is due to the exciton—photon interactiéifn.—,,. The coupling of two excitons
of the polariton waves into bipolaritons is due to the last term in the above equation.

The bipolariton concept contradicts our result that the new quasiparticles (excitonic—
biexcitonic polaritons) exist in the system of interacting photons and electrons. In order
to clarify how our result is connected with the bipolariton model the following critical
remarks should be made. The bipolariton model describes the non-linear propagation of
the polariton waves. In the case where the non-linearities can be neglected there exist two
polariton branches, which are the roots of the equadié(Q, w) = c>Q?, wheree is the
dielectric function. If one takes into account the exciton—exciton interaction, then not only
are the bipolaritons formed, but also the existence of the bipolaritons modifies the dielectric
function. In the studies mentioned above the bipolaritons do not modify the excitonic—
polariton dispersion. For this reason the photon and exciton Green functions have common
poles (upper and lower polariton branches), while the poles of the two-exciton (bipolariton)
Green function depend on the bipolariton binding energy. The authors stated that the Bethe—
Salpeter equation for the bipolariton Green function can be derived from the Heisenberg
equations for the photon, exciton and biexciton creation and annihilation operators, when the
non-linear term in the corresponding Heisenberg equation (the third term in the right-hand
side of equation (34) in a paper by Ivanov and Haug 1993) is neglected. But, this term
is responsible for the exciton—exciton interaction and the non-linear polariton absorption is
governed by the neglected term. If the authors neglected the exciton—exciton interaction
simply in order to obtain explicit results, then one may well ask whether this neglected
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term does not change the form of the Bethe—Salpeter kernel and, therefore, the numerically
calculated bipolariton binding energy.

(ii) The second result concerns the fact that the formation of biexcitons may modify the
dielectric function and, therefore, the excitonic—polariton dispersion. In order to obtain a
simple understanding of this problem we consider the eightfold-degenerate exciton ground
state for theZy, series of CuBr. In this case the exciton states are formeldslyonduction
and I's valence band. The splitting of the exciton ground state is caused by the Elliott
exchange interaction and yields the exciton st&tgs ', andI's. Thel's exciton dispersion

Er,(Q) = Ery +h?Q%/2M .
whereEr, = Ergr, + Ag; Ag is the splitting caused by the Elliott exchange interaction.
The dielectric functiore(Q, ) can be expressed in the following form:

7.2
6@ o) =1- " n(Q, w)
[0}

where 1" is the proper self-energy part of the long-wavelength photons, and it can be
calculated by means of the corresponding Green funckidp In diagrammatic language

K}, can be obtained by subtracting from the two-particle Green function any diagrams that
may be separated into two parts by cutting only a long-wavelength photon line. In the case
where the existence of the biexciton states can be neglekiédassumes the form of the
two-particle Green function for ‘mechanical’ excitons when the Elliott exchange interaction
is included, and the dielectric function takes the following form:

Arr n Arr )
Ery(Q) —ho  Er(Q)+ho

where A, 7 is the longitudinal-transverse splitting amg is the ‘background’ dielectric
constant. The exciton resonance at the péht= 0 can be observed for the energy of
exciting photonshor, = Er,gr, + Ag. Our calculations predict that the existence of
biexcitons modifies the dielectric function, and the optical absorption of the photons of
energyhwy,, = Er,er, + Ag — Apiexe Can be observed. The energy shify;.,. at the point
Q = 0 can be calculated by means of the corresponding exciton—biexciton matrix element.
Later, we will see that the order of magnitude &f;.,. can be obtained from two-photon
absorption measurements. It is worth noting that according to the bipolariton model this
effect cannot be observed.

We now discuss the model and the method. The system under consideration consists of
a radiation field, described by the actisf” and a material system. In this letter we will
consider the ions fixed at their equilibrium positions. In this approximation the material
system is the semiconductor, which can be described by the action for non-interacting
electrons in a periodical lattice potentis’. The radiation and the matter interact via an
electron—photon interaction, described by the acf6n®. In terms of the field theory we
deal with a boson (photon) field,(z) interacting with a fermion field¥(y) (or ¥(x))
at finite temperatures. Here = p,v, y = r,0,u andx = r/,0’,u’ are composite
variables, wherer, v, p are radius vectors and, ¢’ are spin indices. According to the
finite-temperature field theory, invented by Matsubara (1955), the variabl€sv range
from 0 top = h(ksT), whereT is the temperatureksz being the Boltzmann constant.

In the crystal optics approximation the action of the system has the following form
(Koinov and Glinskii 1988):

8(Q’ C()) =&p <1+

Sy = Sée) + S(()w) + S(e—w) + S(e—e) (1)



L394 Letter to the Editor

where

S5 = PG00 ) (28)
S = 2 40D e DA (@)
S = IOy, x|2)¥(x)Aq(2) (20)
S0 = - ZBOWORD (v, 1 DY DEP 0 VPO e

Here and throughout we use the summation—integration convention that repeated variables
are summed or integrated over. The actig¥ ¢ describes the short-range part of the
electron—electron interactionG©® ~(y, x) is the inverse one-particle Green function for
the system of non-interacting electrons in a periodical lattice potemj‘%fl(z, 7') is the
inverse free-photon propagator (in a gauge where the scalar potential is equal td¢&ro).
is the ‘bare’ electron—photon vertex.

All Matsubara Green functions can be obtained by functional differentiation from the
generating functional for the connected Green functi@fg, M, N] which is defined as
follows:

Z[J,M,N] = InW[J, M, N] (3a)

whereJ is the source of the photon fieldf and N are the two- and four-particle electron—
hole sources, and

W[J, M, N] = /DM(‘IJ, W, A) explS + Jo(2)Au(z) = V()M (y, X)W (x)

+ W)W GIN(y, ¥ x, xHW ()W ()} (3b)

In the last equation the measurg.s given by Du = constantx d¥ d¥ dA, where
the normalization constant is chosen in such a manner fiat exp(S) = 1. The
sourceN (y, y'; x, x’) is antisymmetric over the argumentsy’ andx, x": N(y, y'; x,x’) =
—NO,y;x,x)=—=N(,y;x, x).

The photon Green function and one-particle electron Green function can be defined as
follows:

. 8°Z
Daﬂ(Z, Z/) = _<Tv{Aa(Z)A/3(Z/)}> = —W (4a)
~ _ 87
G(x,y) = —<Tu{‘1’(x)‘1’(y/)}) = —m~ (4b)

Here all functional derivatives over the fermion fields and over the sources of the
fermion type are left-handed ones, and after the functional differentiation one should set
J =M = N =0. In a similar way we introduce the two- and four-particle electron—hole
Green functions:

k(* Y (TP ()W )P ()P () 'z (40)
= —(1, X X = —

y ¥ Y Y SM(y, x)8M(y', x')

R<x21 y4s) _ 4
Y21 Xa3 SN (y12; x12) SN (y34; x34)

= — (T(¥(y3) ¥ (y2) ¥ (x3) ¥ (x2) W (y1) ¥ (y2) ¥ (x1) W (x2)}) (4d)

where T is au (or u’, v) ordering operatoryi1> = {y1, ¥2}, x12 = {x1, x2} are composite
variables and the bracke{®) on an operatol0 mean that the thermodynamic average is
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taken. The other two functional derivatives Bfwith respect to the sources are

8Z A( ) 6Z
- X215 ¥21) = — 5, . <

3Jy(2) IN (y12; X12)

The basic idea in our method is to use the second Legendre transform in order to derive
a set of exact equations for the Green functions and vertex functions.

It is convenient to treat equation&tb) and (4e) as definitions for functionals
R[J, M, N], G[J, M, N] and A[J, M, N]. If those functionals are invertible with inverses
J[R, G, A], M[R, G, A] and N[R, G, A], then we define the second Legendre transforms

by
V[R, G, A] = Z[R, G, A] — Ju(2)

Ra(z) =

(4€)

8Z 87
My, x) o ——
8Jo(2) SM(y, x)
oz ©)
(125 x12)
Furthermore, we based our treatment on the set of nine independent exact equations for
corresponding vertex and Green functions. By using an important property of the second
Legendre transform—its orthogonality—one can derive the following set of equations:
82z 82v

8A;(x)8A;(x') 8B;(x") 8B (x")
Here A1(x) = J,(2), A2(x) = M(y, x), As(x) = N(y1z; x12) are the sources of the
corresponding fields an@;(x) = R,(z), B2(x) = G(x,y), Ba(x) = A(x21; y21) are the
corresponding dual quantities. Thus taking 1, 2, 3 andk = 1, 2, 3 we obtain a set of nine
independent exact equations. Those equations allow us to formulate a microscopic theory of
the propagation of a long-wavelength electromagnetic field through the crystal. Equations
(6) allow us to obtain the following relationships between the three Green fundignsk
andR. The first one is a relationship between the photon propagator and two-particle Green
function:

— N(y12; X12)

—8i8(x — x). (6)

/
Dyg(z,7) = ths)(z, )+ DO . 2Py, X|ZN)K(); )yc/)l“éo)(y’, X/IZ”’)D,gg)(z”’, Z).
(7a)

One can also obtain from equations (6) the relationship between two- and four-particle
Green functions in the form

R(le y43) =RO<X21 y43>~|—R0<x21 y65) 82V
Y21  Xa3 Y21 X43 Y21 Xes ) 8 A(xes; ye5) 6G (x, y)

! 82V
x K(x }’/) Ro<x87 y43) (7b)
y x J8G(x',y") 8 A(xg7; y87) Y87 X43

where Rq is the four-particle electron—hole Green function when the polariton effects
are neglected. The main result which follows from equations (7) is that in the system
of interacting electrons and photons, there exist well-defined composite quasiparticles
(excitonic—biexcitonic polaritons), which manifest themselves as common poles of the
Fourier transforms of the three Green functidig, K and R (Gell-Mann and Low 1951).
Thus, any elementary excitation of wave vedfprand energy:w, (Q) of the system under
consideration manifests itself as a pole near the real axis in the frequency plane of the
function

K r101 T303
T202 T404

U — U1 Ugq — U3, Z)-
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The last one is obtained from the Fourier transform of the two-particle Green function

K r101 T303
T202 T404

1
Up — U] Ug — U3; é(uz +ur—uz—uy)

by the analytic continuation of the set of points,i= i(27/hf)p; p = 0,£1,£2,...,
along the imaginary axis into the appropriate half of thplane. Similarly, one can define
the analytic continuation of the photon and four-particle Green functions. If we restrict the
range of frequencies to the neighbourhood of positian, (Q), we may write

T101 T303 . ) DV (1r209; T107; U21) DY (1404; T303; Ug3)

Up — UL U4 — U3, @ | X . (8a)
T202 T404 o —w,(Q) +10*

A?(Q)A" Y (Q)
#(Q. @) w — w,(Q) +i0+ (80)
R¢ (r,0)21 (71,0065 Wy 10,5 10y, [Iwm,; W, 1w, |w
(r’ 0)43 (T, 0_)87 mi s mys P1 ms3s mas P2
~ WL (1, 0)a3; (7, 0)21liwmy; i, iw),)
U (1, 0)g7; (1, 0)65li0mg; i0n,; i0)2) (80)

0 — ,(Q) +i0*

where ©VQ (r507; 7101 u21), A2(Q) and W'Q((r, 0)a3; (7, 0)21liWm,; 1w, lw,,) are the
electron—hole, photon and four-particle amplitudes, respectively. Since the excitonic—
biexcitonic polariton energyiw,(Q) is a pole of the photon Green function, it can be
obtained from the corresponding Dyson equation for the photon Green function. In this
way, one can obtain the Maxwell equations for the vector potertjdl in the form

[(@0/0)?eap(Q. 0) — 8pQ% + QuQp] AL (Q) = 0 (%)
where the tensos.s(Q, ,) has been defined as follows:
A hc?
eap(Q. @) = 8p — — - TD(Q. ). (9b)

Here Hi’/‘;(Q, w) is the Fourier transform of the proper self-energy part of the long-wave-
length photonsngl;) can be calculated from the corresponding exciton Green function:

/ X ! I i 7
% ) =100, xl) Kﬁ(y i,)r;‘”(y ,x12). (90)

/ / X (y, 62 (y,
KET Y x/ = k@17 x, — . 1) -2 (v. ) A(x21; y200G 1 (y1, x7)
Xy Xy 8G(y', x) §A(x215 y2,y)
i SE(y,x) R (le y43> (SE(y/’_X/)
A (x21; y21) Y21 Xa3 ) §A(Xa3; ya3)

Here, the electron mass operabris considered as a functional &, G and A after going
over from the functionalZ to the second Legendre transform.

The energy shiftA,;... is due to the last term iti9d). Unfortunately, equatiori9d)
is so complicated that it is of almost no use in calculating the dielectric tengorFor
this reason, as a first approximation, we can treat the effects of the four-particle states by
using in the last term in equatiof®d), the biexciton Green function, instead 8. The
simplest case in which the calculation can be done is the case of the exciton resonance
at the pointQ = 0 in CuBr. In CuBr the lowest poles of the exciton Green function
are the exciton states with symmetry & I'y & I's, but only excitons withl's symmetry

(9d)
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are dipole active. Thus, the energy of exciting photons has to be equal to the lowest
dipole-active pole of the exciton Green function, & = Efgr, + Ap where Ag is

the splitting caused by the Elliott exchange interaction. The lowest poles of the biexciton
Green function in CuBr, i.e. the biexciton states at the p@int= 0 havel's ® 'y @ I's
symmetry. According to our theory, the existence of biexcitons modifies the dielectric
function, and the optical absorption of the photons by excitation of exciton states at the
point Q = 0 is determined by the lowest dipole-active pole of the Green fun¢@aéh with

I's symmetry, i.e. the photon energy has to be equat @@ = 0) = Er,. Since we are
looking for the lowest dipole-active state, instead of the sum over all exciton bands, we take
into account only the resonant term proportional @£ — Er,). Furthermore, we take

into account only the three lowest biexciton states Wit 'y & I's Ssymmetry, assuming

that EY¢*¢ — Er, ~ EP* — Erg ~ EPi*“ — Ery ~ Eo. In this approximation the pole of

the Green function(9d) is given by

. 1
Erg = EZC — Apiexc Apiexe = FOGAWSF + |Arers |2 + [Aryr P) (10a)

where the exciton—biexciton matrix element is defined as follows:

Apn = (W"9=0I55 /5 A| F2=0) (100)

biexc exc

where F? (k) and \llffCQ,’v.U,(k:,p, q) are the exciton and biexciton wave functions. The
matrix element(10b) describes a transition between an exciton and a biexciton state. It is
worth noting that since our theory takes into account the non-linear polariton absorption
in principle, the operatoé%/8§G should depend on the light intensity and on the exciton
population in principle. But, it has a very complicated form, so at the present time the
calculation of the exciton—biexciton matrix elements remains an open problem.

We now proceed to a comparison with the experiment. Due to the valence band
degeneracy, the biexciton ground state in CuBr is sixfold degenerate. For the centre-
of-mass momentumt@ = 0 of biexcitons, the different types of two-particle interaction
(electron—electron, electron—hole and hole—hole) split the ground state according to the
relation (Tg ® I'e)” ® (Mg ® I's)™ = I'y @ I's & I's. The biexciton binding energies
Egl.(l“,-) = 2Er,er, — E;(T;) for the different ground states are given by the relation
El’,’i(l“,-) = E,?l. + AE(T;), whereAE(T';) are the energy shifts of the states with symmetry
I'; due to the hole-hole interactions and have the following forms (Honedagk1985):

15 9 3
AEMTY) = =P+ 186, + 2P AEM3) ==, p
AE(T's) = —§51 — 186, + §,33-
4 4
The energyE?, can be written in the following form:
EY, = 2Erer, + ZAE + %ALT — (Ef}; + 3a1)

where E{. + 3, is the contribution to the biexciton binding energy due to the diagonal
terms of the biexciton Hamiltonian. This part of the biexciton energy can be calculated
theoretically by using a biexciton wave function symmetric with respect to the exchange of
two identical particles and neglecting all exchange interactions. The parameters fpthe
exciton resonance of CuBr and the parameters of the biexciton states are (Hoetrhge
1985) as follows:

Er, =2.9644 eV E;i(I'1) = 5.9059 eV
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Erjer, = 29627 eV E,('s) = 5.9103 eV
Arr = 0.0122 eV Epi(T'3) = 5.9128 eVl

From the experimental results (Honerlageal 1981, 1985) one can obtain that the
energyE,?i is equal to 5.9158 eV. If we assume thet = Ey, — Er,gr, = 0.0017 eV, we
calculate thatE, + 3« is equal to 0.0139 eV. But, according to the theoretical calculations
by Ekardt and Sheboul (1976), the enetg/ + 3«1 is equal to 0.0265 eV. The discrepancy
between the energ¥y. + 3a; calculated theoretically by Ekardt and Sheboul and that
obtained by Honerlaget al (1981, 1985) can be explained by making the assumption that
the splitting due to the Elliott exchange interaction is not equal to 0.0017 eV, since the
existence of biexcitons modifies the dielectric function and the exciton resonance can be
observed for the energy of exciting photdns,, = 2.9644 eV= Er, r,+Ag— Apiexc. The
order of magnitude of the splitting due to the Elliott exchange interaction and energy shift
Apiexe €aN be obtained by assuming tiié,?, is equal to 5.9158 eV anH,‘ji + 3wy is equal
to 0.0265 eV. Then one can obtain for the splitting due to the Elliott exchange interaction
Ag = 0.0165 eV and for the energy shiff,;... = 0.0148 eV. Although the calculations
by Ekardt and Sheboul should be corrected for the band-structure terms, screening effects,
polaron masses, etc, we will still have an important Elliott exchange interaction which is
then compensated by the energy siiff;.,..
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